

Hustle Pre-Calculus Test #643

Hustle Pre-Calculus Test #643

Hustle Pre-Calculus Test #643

-1	2	3	1	
0	3	4	- 5	_
1	0	0	- 2	_
5	1	- 3	2	

#1 Pre-calculus – Hustle MAO National Convention 2018

$$\begin{vmatrix} -1 & 2 & 3 & 1 \\ 0 & 3 & 4 & -5 \\ 1 & 0 & 0 & -2 \\ 5 & 1 & -3 & 2 \end{vmatrix} =$$

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#1 Pre-calculus – Hustle MAO National Convention 2018

[1	3	2	L	-1	
5	—	4	3) 3	0	
2	- 2	0)	(1	
2	2	- 3	1	5	5	

#1 Pre-calculus – Hustle MAO National Convention 2018

$$\begin{vmatrix} -1 & 2 & 3 & 1 \\ 0 & 3 & 4 & -5 \\ 1 & 0 & 0 & -2 \\ 5 & 1 & -3 & 2 \end{vmatrix} =$$

Answer : _____

Round 1 2 3 4 5

Answer : _____

How many total asymptotes (vertical, horizontal, or slant) does the function have?

$$f(x) = \frac{x^3 - 8}{x^2 - 3x - 4}$$

How many total asymptotes (vertical, horizontal, or slant) does the function have?

$$f(x) = \frac{x^3 - 8}{x^2 - 3x - 4}$$

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#2 Pre-calculus – Hustle MAO National Convention 2018

How many total asymptotes (vertical, horizontal, or slant) does the function have?

$$f(x) = \frac{x^3 - 8}{x^2 - 3x - 4}$$

#2 Pre-calculus – Hustle MAO National Convention 2018

How many total asymptotes (vertical, horizontal, or slant) does the function have?

$$f(x) = \frac{x^3 - 8}{x^2 - 3x - 4}$$

Answer	:							Answer	:	
Round	1	2	3	4	5			Round	1	

Find the area of $\triangle ABC$ if a = 9, b = 12, and $\angle C = 60^{\circ}$. Sides are labeled with the same letters as the angle opposite them.

#3 Pre-calculus – Hustle MAO National Convention 2018

Find the area of $\triangle ABC$ if a = 9, b = 12, and $\angle C = 60^{\circ}$. Sides are labeled with the same letters as the angle opposite them.

Answer :

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#3 Pre-calculus – Hustle MAO National Convention 2018

Find the area of $\triangle ABC$ if a = 9, b = 12, and $\angle C = 60^{\circ}$. Sides are labeled with the same letters as the angle opposite them.

#3 Pre-calculus – Hustle MAO National Convention 2018

Find the area of $\triangle ABC$ if a = 9, b = 12, and $\angle C = 60^{\circ}$. Sides are labeled with the same letters as the angle opposite them.

Answer	:						Answer	·:					
Round	1	2	3	4	5		Round	1	2	3	4	5	

$$\cos\left(2\sin^{-1}\left(-\frac{1}{3}\right)\right) + \tan\left(\sec^{-1}\left(-\frac{13}{12}\right)\right) =$$

#4 Pre-calculus – Hustle MAO National Convention 2018

$$\cos\left(2\sin^{-1}\left(-\frac{1}{3}\right)\right) + \tan\left(\sec^{-1}\left(-\frac{13}{12}\right)\right) =$$

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#4 Pre-calculus – Hustle MAO National Convention 2018

$$\cos\left(2\sin^{-1}\left(-\frac{1}{3}\right)\right) + \tan\left(\sec^{-1}\left(-\frac{13}{12}\right)\right) =$$

#4 Pre-calculus – Hustle MAO National Convention 2018

 $\cos\left(2\sin^{-1}\left(-\frac{1}{3}\right)\right) + \tan\left(\sec^{-1}\left(-\frac{13}{12}\right)\right) =$

Answer : _____

Round 1 2 3 4 5

Answer : _____

The diameter of a cylinder is equal to half of the height of the cylinder. Express the volume of the cylinder in terms of the height *h*.

#5 Pre-calculus – Hustle MAO National Convention 2018

The diameter of a cylinder is equal to half of the height of the cylinder. Express the volume of the cylinder in terms of the height *h*.

Answer :	
----------	--

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#5 Pre-calculus – Hustle MAO National Convention 2018

The diameter of a cylinder is equal to half of the height of the cylinder. Express the volume of the cylinder in terms of the height *h*.

#5 Pre-calculus – Hustle MAO National Convention 2018

The diameter of a cylinder is equal to half of the height of the cylinder. Express the volume of the cylinder in terms of the height *h*.

Answer	:					Answer	:					
Round	1	2	3	4	5	Round	1	2	3	4	5	

How many times will $y = 5 \cos x + 1$ intersect the x-axis on $[-2\pi, 2\pi]$?

#6 Pre-calculus – Hustle MAO National Convention 2018

How many times will $y = 5 \cos x + 1$ intersect the x-axis on $[-2\pi, 2\pi]$?

Answer :	
----------	--

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#6 Pre-calculus – Hustle MAO National Convention 2018

How many times will $y = 5 \cos x + 1$ intersect the x-axis on $[-2\pi, 2\pi]$?

#6 Pre-calculus – Hustle MAO National Convention 2018

How many times will $y = 5 \cos x + 1$ intersect the x-axis on $[-2\pi, 2\pi]$?

Answer : _____

Round 1 2 3 4 5

Answer : _____

Given: $3^{3^x} + 9^{3^x} = 20$ and $\log_3 y = x$

Find the exact value of *y*.

Given: $3^{3^x} + 9^{3^x} = 20$ and $\log_3 y = x$

Find the exact value of *y*.

Answer	:	

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#7 Pre-calculus – Hustle MAO National Convention 2018

Given: $3^{3^x} + 9^{3^x} = 20$ and $\log_3 y = x$

Find the exact value of *y*.

#7 Pre-calculus – Hustle MAΘ National Convention 2018

Given: $3^{3^x} + 9^{3^x} = 20$ and $\log_3 y = x$

Find the exact value of *y*.

Answer : _____

Round 1 2 3 4 5

Answer : _____

Which statement is FALSE?

A.
$$sin^{2}\left(\frac{\pi}{2} - x\right) + sin^{2}x = 1$$

B. $\frac{1}{sin^{2}x} + \left(\frac{1}{\tan x}\right)^{2} = 1$
C. $cos^{2}(-x) + sin^{2}(-x) = 1$
D. $csc^{2}x(1 - cos^{2}x) = 1$

Which statement is FALSE?

A.
$$sin^{2}\left(\frac{\pi}{2} - x\right) + sin^{2}x = 1$$

B. $\frac{1}{sin^{2}x} + \left(\frac{1}{\tan x}\right)^{2} = 1$
C. $cos^{2}(-x) + sin^{2}(-x) = 1$
D. $csc^{2}x(1 - cos^{2}x) = 1$

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#8 Pre-calculus – Hustle MA© National Convention 2018

Which statement is FALSE?

A.
$$sin^{2}\left(\frac{\pi}{2} - x\right) + sin^{2}x = 1$$

B. $\frac{1}{sin^{2}x} + \left(\frac{1}{\tan x}\right)^{2} = 1$
C. $cos^{2}(-x) + sin^{2}(-x) = 1$
D. $csc^{2}x(1 - cos^{2}x) = 1$

#8 Pre-calculus – Hustle MAO National Convention 2018

Which statement is FALSE?

A.
$$sin^{2}\left(\frac{\pi}{2} - x\right) + sin^{2}x = 1$$

B. $\frac{1}{sin^{2}x} + \left(\frac{1}{\tan x}\right)^{2} = 1$
C. $cos^{2}(-x) + sin^{2}(-x) = 1$

D.
$$csc^2x(1 - cos^2x) = 1$$

Answer : _____

Round 1 2 3 4 5

Answer : _____

Find all solutions to the equation below:

$$x^3 + 2x^2 - 19x - 20 = 0$$

Find all solutions to the equation below:

$$x^3 + 2x^2 - 19x - 20 = 0$$

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#9 Pre-calculus – Hustle MAO National Convention 2018

Find all solutions to the equation below:

 $x^3 + 2x^2 - 19x - 20 = 0$

#9 Pre-calculus – Hustle MAO National Convention 2018

Find all solutions to the equation below:

 $x^3 + 2x^2 - 19x - 20 = 0$

Answer : _____

Round 1 2 3 4 5

Answer : _____

If the solutions to $x^6 - 64 = 0$ are graphed on the complex (Argand) plane, a hexagon is formed. What is the area enclosed by the hexagon? If the solutions to $x^6 - 64 = 0$ are graphed on the complex (Argand) plane, a hexagon is formed. What is the area enclosed by the hexagon?

Answer		
	nswer -	Inswer :

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#10 Pre-calculus – Hustle MAO National Convention 2018

If the solutions to $x^6 - 64 = 0$ are graphed on the complex (Argand) plane, a hexagon is formed. What is the area enclosed by the hexagon?

#10 Pre-calculus – Hustle MAO National Convention 2018

If the solutions to $x^6 - 64 = 0$ are graphed on the complex (Argand) plane, a hexagon is formed. What is the area enclosed by the hexagon?

Answer	:					Answer	:					
Round	1	2	3	4	5	Round	1	2	3	4	5	

What is the sum of the units digits of 8^{2018} , 3^{2018} , and 7^{2018} ?

What is the sum of the units digits of 8^{2018} , 3^{2018} , and 7^{2018} ?

•	
Ancwer	

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#11 Pre-calculus – Hustle MAO National Convention 2018

What is the sum of the units digits of 8^{2018} , 3^{2018} , and 7^{2018} ?

#11 Pre-calculus – Hustle MAO National Convention 2018

What is the sum of the units digits of 8^{2018} , 3^{2018} , and 7^{2018} ?

Answer : _____

Round 1 2 3 4 5

Answer : _____

Solve for *x*:

1	x	4		4	0	2
3	0	-2	=	\mathbf{x}	1	-1
1	-1	3		0	3	2

Solve for *x*:

1	x	4		4	0	2
3	0	-2	=	x	1	-1
1	-1	3		0	3	2

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#12 Pre-calculus – Hustle MAO National Convention 2018

Solve for *x*:

1	x	4		4	0	2
3	0	-2	=	x	1	-1
1	-1	3		0	3	2

#12 Pre-calculus – Hustle MAO National Convention 2018

Solve for *x*:

1	x	4		4	0	2
3	0	-2	=	x	1	-1
1	-1	3		0	3	2

Answer	:					 -			
Round	1	2	3	4	5				

Round 1 2 3 4 5

Answer : _____

If $f(x) = x^2 + 3x$, then what is the sum of the solutions to $f \circ f(x) = 0$?

If $f(x) = x^2 + 3x$, then what is the sum of the solutions to $f \circ f(x) = 0$?

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#13 Pre-calculus – Hustle MAO National Convention 2018

If $f(x) = x^2 + 3x$, then what is the sum of the solutions to $f \circ f(x) = 0$?

#13 Pre-calculus – Hustle MAO National Convention 2018

If $f(x) = x^2 + 3x$, then what is the sum of the solutions to $f \circ f(x) = 0$?

Answer	;	

Round 1 2 3 4 5

Answer : _____

The vector from the origin to $(-4, 4\sqrt{3})$ is rotated 150^o clockwise about the origin. What is the terminal point (a, b) of the resulting vector?

The vector from the origin to $(-4, 4\sqrt{3})$ is rotated 150^o clockwise about the origin. What is the terminal point (a, b) of the resulting vector?

Answer :

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#14 Pre-calculus - Hustle MAO National Convention 2018

The vector from the origin to $(-4, 4\sqrt{3})$ is rotated 150^o clockwise about the origin. What is the terminal point (a, b) of the resulting vector?

#14 Pre-calculus – Hustle MAO National Convention 2018

The vector from the origin to $(-4, 4\sqrt{3})$ is rotated 150^o clockwise about the origin. What is the terminal point (a, b) of the resulting vector?

Answer :						Answer :							
Round	1	2	3	4	5	Round	1	2	3	4	5		

Find the domain of the function, written in interval notation:

$$y = \log_{3x-2}\left(\frac{x-2}{x^2-9}\right)$$

Find the domain of the function, written in interval notation:

$$y = \log_{3x-2}\left(\frac{x-2}{x^2-9}\right)$$

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#15 Pre-calculus – Hustle MA© National Convention 2018

Find the domain of the function, written in interval notation:

$$y = \log_{3x-2}\left(\frac{x-2}{x^2-9}\right)$$

#15 Pre-calculus – Hustle MAO National Convention 2018

Find the domain of the function, written in interval notation:

$$y = \log_{3x-2}\left(\frac{x-2}{x^2-9}\right)$$

Answer	:	

Round 1 2 3 4 5

Answer : _____

Given: $x = 4cis \frac{3\pi}{4}$ $y = 8cis \frac{\pi}{4}$ Find xy in a + bi form. Given: $x = 4cis \frac{3\pi}{4}$ $y = 8cis \frac{\pi}{4}$ Find xy in a + bi form.

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#16 Pre-calculus – Hustle MAO National Convention 2018

Given: $x = 4cis \frac{3\pi}{4}$ $y = 8cis \frac{\pi}{4}$ Find xy in a + bi form. #16 Pre-calculus – Hustle MAO National Convention 2018

Given: $x = 4cis \frac{3\pi}{4}$ $y = 8cis \frac{\pi}{4}$ Find xy in a + bi form.

Answer :	
----------	--

Round 1 2 3 4 5

Answer : _____

If $\sin(2 \cdot x) = \frac{4}{9}$, find $\sin^4 x + \cos^4 x$.

If $\sin(2 \cdot x) = \frac{4}{9}$, find $\sin^4 x + \cos^4 x$.

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#17 Pre-calculus – Hustle MAO National Convention 2018

If $\sin(2 \cdot x) = \frac{4}{9}$, find $\sin^4 x + \cos^4 x$.

#17 Pre-calculus – Hustle MAO National Convention 2018

If $\sin(2 \cdot x) = \frac{4}{9}$, find $\sin^4 x + \cos^4 x$.

Answer : _____

Round 1 2 3 4 5

Answer : _____

In $\triangle ABC$, c = 14, a = 28, and $\angle C = 30^{\circ}$. How many triangles are possible? Sides are labeled with the same letters as the angle opposite them. In $\triangle ABC$, c = 14, a = 28, and $\angle C = 30^{\circ}$. How many triangles are possible? Sides are labeled with the same letters as the angle opposite them.

Answer	:	
--------	---	--

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#18 Pre-calculus – Hustle MAO National Convention 2018

In $\triangle ABC$, c = 14, a = 28, and $\angle C = 30^{\circ}$. How many triangles are possible? Sides are labeled with the same letters as the angle opposite them.

#18 Pre-calculus – Hustle MAO National Convention 2018

In $\triangle ABC$, c = 14, a = 28, and $\angle C = 30^{\circ}$. How many triangles are possible? Sides are labeled with the same letters as the angle opposite them.

Answer	:					Answer :							
Round	1	2	3	4	5	Round	1	2	3	4	5		

 $\sum_{i=1}^{12} (\cos(i\pi) + \sin(i\pi)) =$

 $\sum_{i=1}^{12}(\cos(i\pi)+\sin(i\pi)) =$

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#19 Pre-calculus – Hustle MAO National Convention 2018

 $\sum_{i=1}^{12} (\cos(i\pi) + \sin(i\pi)) =$

#19 Pre-calculus – Hustle MAΘ National Convention 2018

 $\sum_{i=1}^{12} (\cos(i\pi) + \sin(i\pi)) =$

Answer : _____

Round 1 2 3 4 5

Answer : _____

What is the sum of the reciprocals of the roots of

 $P(x) = 3x^4 - 5x^3 + 20x^2 - 8x + 6?$

#20 Pre-calculus – Hustle MAO National Convention 2018

What is the sum of the reciprocals of the roots of $P(x) = 3x^4 - 5x^3 + 20x^2 - 8x + 6?$

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#20 Pre-calculus – Hustle MAO National Convention 2018

What is the sum of the reciprocals of the roots of

 $P(x) = 3x^4 - 5x^3 + 20x^2 - 8x + 6?$

#20 Pre-calculus – Hustle MAO National Convention 2018

What is the sum of the reciprocals of the roots of $P(x) = 3x^4 - 5x^3 + 20x^2 - 8x + 6$?

Answer :								Answer :								-				
Round	1	2	3	4	5							F	Round	ł	1	2	3	4	5	,

For $y = -2 \tan \left(\frac{3\pi x}{4} - 1\right) + 4$, let *P* be the period and let *A* be the vertical shift needed to transform y = tanx into this function. Find $\frac{P}{A}$.

For $y = -2 \tan \left(\frac{3\pi x}{4} - 1\right) + 4$, let *P* be the period and let *A* be the vertical shift needed to transform y = tanx into this function. Find $\frac{P}{A}$.

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#21 Pre-calculus – Hustle MAO National Convention 2018

For $y = -2 \tan \left(\frac{3\pi x}{4} - 1\right) + 4$, let *P* be the period and let *A* be the vertical shift needed to transform y = tanx into this function. Find $\frac{P}{A}$.

#21 Pre-calculus – Hustle MAO National Convention 2018

For $y = -2 \tan \left(\frac{3\pi x}{4} - 1\right) + 4$, let *P* be the period and let *A* be the vertical shift needed to transform y = tanx into this function. Find $\frac{P}{A}$.

Answer	:					Answer :								
Round	1	2	3	4	5	Round	1	2	3	4	5			

What is the exact value of

$$\frac{1}{\log_2 36} + \frac{1}{\log_3 36} ?$$

#22 Pre-calculus – Hustle MAO National Convention 2018

What is the exact value of $\frac{1}{\log_2 36} + \frac{1}{\log_3 36}$?

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#22 Pre-calculus – Hustle MA© National Convention 2018

What is the exact value of $\frac{1}{\log_2 36} + \frac{1}{\log_3 36}$?

#22 Pre-calculus – Hustle MAΘ National Convention 2018

What is the exact value of
$$\frac{1}{\log_2 36} + \frac{1}{\log_3 36}$$
?

Answer : _____

Round 1 2 3 4 5

Answer : _____

A ball is dropped from a height of twenty feet. Each time it rebounds 70% of its previous height. How far, in feet, will the ball travel vertically before "coming to rest"?

#23 Pre-calculus – Hustle MAO National Convention 2018

A ball is dropped from a height of twenty feet. Each time it rebounds 70% of its previous height. How far, in feet, will the ball travel vertically before "coming to rest"?

Answer :	
----------	--

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#23 Pre-calculus – Hustle MAO National Convention 2018

A ball is dropped from a height of twenty feet. Each time it rebounds 70% of its previous height. How far, in feet, will the ball travel vertically before "coming to rest"?

#23 Pre-calculus – Hustle MAO National Convention 2018

A ball is dropped from a height of twenty feet. Each time it rebounds 70% of its previous height. How far, in feet, will the ball travel vertically before "coming to rest"?

Answer	:					Answer :							
Round	1	2	3	4	5	Round	1	2	3	4	5		

The Cartesian point (h, k) is the center of the graph represented by the equation r =

 $\frac{3}{1-\frac{1}{3}\sin\theta}.$ What is h+k?

#24 Pre-calculus – Hustle MAO National Convention 2018

The Cartesian point (h, k) is the center of the graph represented by the equation $r = \frac{3}{1-\frac{1}{3}\sin\theta}$. What is h + k?

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#24 Pre-calculus – Hustle MAO National Convention 2018

The Cartesian point (h, k) is the center of the graph represented by the equation r =

 $\frac{3}{1-\frac{1}{3}\sin\theta}$. What is h+k?

#24 Pre-calculus – Hustle MAO National Convention 2018

The Cartesian point (h, k) is the center of the graph represented by the equation $r = \frac{3}{2}$. What is $h \pm k^2$

4 5

 $\frac{3}{1-\frac{1}{3}\sin\theta}$. What is h+k?

Answer :								Answer :							
Round	1	2	3	4	5					Round	1	2	3		

#25 Pre-calculus – Hustle MAO National Convention 2018

Evaluate:
$$\prod_{k=1}^{9} \left(1 + \frac{1}{k}\right)$$

Evaluate:
$$\prod_{k=1}^{9} \left(1 + \frac{1}{k}\right)$$

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#25 Pre-calculus – Hustle MAO National Convention 2018

Evaluate: $\prod_{k=1}^{9} \left(1 + \frac{1}{k}\right)$

#25 Pre-calculus – Hustle MAO National Convention 2018

Evaluate:
$$\prod_{k=1}^{9} \left(1 + \frac{1}{k}\right)$$

Answer : _____

Round 1 2 3 4 5

Answer : _____